Scaling, Propagation, and Kinetic Roughening of Flame Fronts in Random Media

نویسندگان

  • Nikolas Provatas
  • Tapio Ala-Nissila
  • Martin Grant
  • K. R. Elder
  • Luc Piché
چکیده

We introduce a model of two coupled reaction–diffusion equations to describe the dynamics and propagation of flame fronts in random media. The model incorporates heat diffusion, its dissipation, and its production through coupling to the background reactant density. We first show analytically and numerically that there is a finite critical value of the background density, below which the front associated with the temperature field stops propagating. The critical exponents associated with this transition are shown to be consistent with mean field theory of percolation. Second, we study the kinetic roughening associated with a moving planar flame front above the critical density. By numerically calculating the time dependent width and equal time height correlation function of the front, we demonstrate that the roughening process belongs to the universality class of the Kardar–Parisi–Zhang interface equation. Finally, we show how this interface equation can be analytically derived from our model in the limit of almost uniform background density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical scaling and kinetic roughening of single valued fronts propagating in fractal media

We consider the dynamical scaling and kinetic roughening of single-valued interfaces propagating in 2D fractal media. Assuming that the nearest-neighbor height difference distribution function of the fronts obeys Lévy statistics with a well-defined algebraic decay exponent, we consider the generalized scaling forms and derive analytic expressions for the local scaling exponents. We show that th...

متن کامل

Interface dynamics and kinetic roughening in fractals.

We consider the dynamics and kinetic roughening of single-valued interfaces in two-dimensional fractal media. Assuming that the local height difference distribution function of the fronts obeys Levý statistics with a well-defined power-law decay exponent, we derive analytic expressions for the local scaling exponents. We also show that the kinetic roughening of the interfaces displays anomalous...

متن کامل

Anomalous roughness with system-size-dependent local roughness exponent.

We note that in a system far from equilibrium the interface roughening may depend on the system size which plays the role of control parameter. To detect the size effect on the interface roughness, we study the scaling properties of rough interfaces formed in paper combustion experiments. Using paper sheets of different width lambda L0, we found that the turbulent flame fronts display anomalous...

متن کامل

Propagation and kinetic roughening of wave fronts in disordered lattices

Rights: © 1997 American Physical Society (APS). This is the accepted version of the following article: Åström, Jan & Kellomäki, Markku & Alava, Mikko J. & Timonen, Jussi. 1997. Propagation and kinetic roughening of wave fronts in disordered lattices. Physical Review E. Volume 56, Issue 5. 6042-6049. ISSN 1539-3755 (printed). DOI: 10.1103/physreve.56.6042, which has been published in final form ...

متن کامل

Scaling and noise in slow combustion of paper

We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995